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Abstract. The article containsa brief review of the first stageof theauthors’
researchon spinorsassociatedwith higher-dimensionalgeometriesand, in particular,
on the physicalrelevanceof Cartan‘.s simple(pure) spinors.Historical remarksare
followedby a shortdescriptionof the relation betweenspinorsandnullelements.
General properties(grading,bilinear for,ns,chargeconjugation)of Clifford algebras
associatedwith real vector spaceswith scalar products are describedand their
doubleperiodicity modulo 8 is exhibited The latter gives rise to a chessboard
arrangementof the algebras; it is shownhow the relevantpropertiesof thespin
representationof everyreal aifford algebracan be simplyobtainedfrom thoseof
therepresentationof an algebrabelongingto thechessboard.

I. INTRODUCTION

Spinors — and structuresassociatedwith them — areamongthe geometrical
notions whose importancewas recognizedas a result of researchin physics.
For a long time, the interest of physicists in spinors wasrestrictedto three-

and four-dimensionalspaces(Euclideanand Minkowski). Spinorsassociatedwith
them have two or four components.Recentwork on fundamentalinteractions
and their unification makes essentialuse of geometriesof more than four di-

mensions.For this reason,spinor structuresin higher dimensionsand,in parti-
cular, Elie Cartan’s <<simple>> or <<pure>> spinors, have now more chance of
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becomingrelevant to physics than they hadat the time of the appearanceof the

articleby BrauerandWeyl (1935)andCartan’s(1938)lectures.
This article contains a brief review of the first stageof our researchoriented

towards physical applications of spinors associatedwith higher-dimensional

geometries.A fuller account is being publishedunder the title The Spinorial

Chessboardin the Springer-Verlagseriesof TriesteNotesin Physics.It is intended
to be followed by an accountof the spinor groupsand structures,the geometry

of simple spinors and twistors, and of the associateddifferential equations.

2. A LITTLE OF HISTORY

There is a prehistory of spinors:the period of time, before the discoveryof

the spin of the electron,when mathematiciansconsiderednotions and ideas
closely relatedto thoseof spin representations(in the presentday terminology).
It begins probably with Leonhard Euler (1770) and Olinde Rodrigues (1840)

who discoverednew representationsof rotations in three-dimensionalspace.The
latter wrote an equationfor a rotation (x, y, z) —* (x’, y’, z’) equivalentto

(1) x’ = [1 + — (m
2 +n2 +p2~1UXUt

where

1 1
I + — ip — (im + n) z x— iy

2 2
(2) U= , x=

— (Em—n) 1— —ip x+iy —z
2 2

and similarly for X’. The right hand side of (1) is rational in the components
of the vector (m, n, p) parallel to the axis of rotation;the angleof rotation is
w = 2 arctg~\~~i-n2 + p2 and theunitary unimodularmatrices±U cos ~- w

cover the rotation in question.This may be interpretedto meanthat Euler and
Rodrigues knew that Spin(3) = SU(2). Formulae for rotations similar to (1)

werealso knownto Carl Ludwig Gauss(cf. Cartan1908).
The discoveryof quaternionsby William Rowan Hamilton (1844)ledto a much

simpler, <<spinorial>> representationof rotations:if q ix + jy + kz is a <<pure>>
quatemionandu is a unit quaternion,then

q -+ U qu~

is a rotationand every rotation can be so obtained.This observation,which can
be usedto establish the isomorphism Spin(3) = Sp(l), was made by Arthur
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Cayley (1845) who mentioned, however, that the result had beenknown to
Hamilton. Cayley discoveredalso a quaternionicrepresentationof rotations in

four dimensionsthat was equivalentto the statementSpin(4) Sp(l) x Sp(l)
(Cayley 1855). Quaternionsare now an important part of the structureof real
Clifford algebras.In this context, it is instructive to recall the view of Lord

Kelvin (quotedafter Kline 1972):

~rQuaternionscamefrom Hamilton after his really good work had beendone;
and though beautifully ingenious,havebeenan unmixedevil to thosewho have
touchedthemin anyway. . . Vector is a uselesssurvival,or offshootfrom quater-
nions,andhas neverbeenof theslightestuseto any creature,.

The Hamilton-Cayley representationof rotations in 3 and 4 dimensionsby

quatemionswasgeneralizedto higher-dimensionalspacesby Rudolf 0. Lipschitz
(1886)who used for this purposethe associativealgebrasintroducedby Wiffiam

K. Clifford (1878). The algebras consideredby Clifford and Lipschitz were
generatedby n anticommuting<<units>> e

0 with squaresequalto— 1. In E.Cartan’s
<<Nombres complexes:Exposé,d’après l’article allemandde E. Study (Bonn)>>

thereis a definition and classificationof real Clifford algebrasof arbitrarysigna-

ture (Cartan1908).
The road to spinors initiated by Euler andessentiallycompletedby Clifford

and Lipschitz may be describedas being basedon the ideaof taking thesquare

root of a quadratic form. Indeed the matrix X given by (1.2) is linear in x, y, z

andhastheproperty

(3) = (x
2 +y2 +z2)I

whereI is the unit 2 by 2 matrix; Clifford algebrasprovidea universalmethodof

generalizing(3) to higherdimensionsandarbitrarysignatures.
Spinorshaveanotherparentage,relatedto the study of representationsof Lie

groups and algebras.The Lie algebrasof orthogonalgroups haverepresentations

which do not lift (<<integrate>>)to linearrepresentationsof thegroupsthemselves.
For example,the Lie algebraof SO(3)is isomorphicto 1R3 with the vectorpro-

duct playingthe roleof the bracket,

(4) [e
1,e2]=e3, etc.

The representationof (4) given by e0 -÷ a~/2i, where the Pauli matricesare

0 l\ 0 —i 1 0
(5) u=a1= ~ iE=u2= ,

1 0! i 0 0 —1

doesnot lift to a representationof SO(3), but integratesto a repre~entationof
SU(2), the simply-connecteddouble cover of SO(3),or, in otherwords,to a two-
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valued representationof SO(3). Cartan(1913) determinedall irreducible repre-
sentationsof the Lie algebrasof the groups SO(n)and found that, for every

n > 2, thereare among them representationswhich do not lift to SO(n).This is
so becausethe groupsSO(n)are not simply-connected;the double valuedness
comesfrom

(6) ir1(SO(n))=Z2 for n>2

and Spin(n) is the double cover of SO(n)which is simply-connectedfor n > 2.

Cartan’s approachwas infinitesimal: he consideredrepresentationsof Lie alge-
bras only. Brauer and Weyl (1935) found global, spinorial represnentationsof
the groups Spin(n) for all n. This road to spinorsmay be called topological:it is

related, in an essentialway, to the non-triviality of the fundamentalgroups ir1

of the groupsof rotations. It has the virtue of allowing a generalizationof the
motion of spinorial representationsto general linear groups (Ne’eman 1978),
As a manifold, the group GL~(n, IR) of n by n realmatriceswith positivedeter-

minantis homeomorphicto the Cartesianproductof manifolds,

(7) SO(n)>< ~n(n + 1)12

Therefore,for n > 2, .7r1(GL+ (n, IR)) = andthe grouphasasimply-connected

universalcover GL+ (n, IR) horneomorphicto

(8) Spin(n)x fl~n(n+1)I2

The group GL~(n, IR), for n > 2, hasno finite-dimensionalfaithful representa-

tions. In other words, spinors associatedwith the general linear grouphavean

infinity of components.They havethevirtue of not requiring, for their definition,

any quadratic form or scalarproduct; they can be contemplatedon a <<bare>>

differentiable manifold without metric tensor. The topological approach to

spinors is more generalthan the one basedon the ideaof linearizationof a qua-

dratic form.

The importanceof the two-valued representationsof the rotation group for

physics becanieclear after the discoveryof the intrinsic angularmomentum —

spin — of the electron (Ijhlenbeck and Goudsmit 1 925) andthroughthe work

of WolfgangPauli (1927), Paul A.M. Dirac (1928) andmany other physicistson

wave equationsdescribing the behaviour of fermions, i.e. particles with half-

integerspin. Accordingto B.L. van der Waerden(1960), thenamespinor is dueto

PaulEhrenfest.

Herrnann Weyl (1929) put forward a relativistic wave equation for massless

particles describedby a two-component spinor function. Weyl’s equation was

criticized by Pauli(1933)onthegroundthat it wasnot invariantunderreflections.

Ettore Majorana (1937) introduced another equation,closely related to Weyl’s,
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basedon a reality condition equivalentto the identification of the particle and
its antiparticle.Two-componentequationsbecameacceptedin elementaryparti-
cle physicsafterthe discoveryof parity violation in weakinteractions.

At first, spinorsbaffled physicistswho, undertheinfluenceof relativity theory

and despiteLord Kelvin’s opinion, were becomingaccustomedto scalars,vectors
andtensors.In the wordsof C.G. Darwin (1928):

~Therelativity theoryis basedon nothingbut the idea of invarianceanddevelops
from it the conceptionof tensorsas a matterof necessity;andit is rather discon-
certing to find that apparentlysomethinghas slipped through the net, so that
physical quantities exist, which it would be, to say the least, very artificial and
inconvenientto expressas tensors,.

What is a spinor?Every physicistusesthisnotion frequentlyand knowsit well,
but amazingly diverse definitions of spinorsare given in the literature.The dif-
ferencesamong the definitionsof spinorsare more profoundthan thoserelated

to vectorsand tensors;for spinors,thereare differencesin thesubstanceandnot
only in the form of the definitions.

Geometryand physicsrequire a schemeto deal with fields of quantitiessuch

as vectors,tensorsandspinors.Tensorsof varioustypesare first definedin terms

of vectors:for example,they may be describedas multilinear maps on Cartesian
productsof vectorspacesandtheir duals.This algebraicdefinition is thenextend-

ed to differentiablemanifolds by taking the tangentbundle andapplying to it
the <<functor>> correspondingto the type of tensorsunderstudy.No such func-
tonal or natural constructioncan be given for spinorsbecausethereare topolo-

gical obstructionsto their existence on manifolds. Moreover, the <<obvious>>
algebraic definition of a spinor spacemay be extended in inequivalent ways
to manifolds (Trautman 1987). The algebraic definition may be formulatedas
follows (Chevalley 1954): assume,for simplicity, that V is a 2m-dimensional

realvectorspacewith a scalarproductg
0. The spaceof (Dirac)spinorsof (V, g0)

is the carrier spaceS0 of a complex, faithful and irreduciblerepresentationof
the Clifford algebraCI(g0). Since the algebraC1(g0) is simple, all suchrepresen-

tations are equivalentand the 2m~dimensionalspaceS0 is determinedup to
isomorphism.

There are at least two inequivalent extensionsof the algebraicdefinition of
spinorsto manifolds.We recall them herefor the specialcaseof a 2m-dimensional

orientedmanifoldM with a positive-definiteRiemannianmetric tensorg.

(i) The standarddefinition (Haefliger 1956, Borel and Hirzebruch 1958-60)

of a spinor structureon M: it is a spin prolongationPofthe bundleFg of ortho-
normal framesof coherentorientationon M. Thereare bundlemaps
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z2
‘I,

Spin(2m)-÷P -÷M

.1’
SO(2m) ~~Fg~#M

(see, for example,Dabrowskiand Trautman(1986) for details andreferences).
The bundle ~ —~-M of Dirac spinorsis associatedwith P -+ M by the standard

representationof Spin(2m)inS0 = C
2” - TheprolongationP existsif, andonly if,

the secondStiefel-Whitneyclassof M vanishes.

(ii) If M admits an orthogonal almost complex structureJ, then one can
definea <<Chevalleybundle>>

S = AN C A(C ® TM)

whereN is the totally null subbundleof C ® TM consistingof all complexvectors

of the form u-i J(u), whereu E TM. The bundleS -÷MhasS~as its typical fibre
andthereis a bundlemap

Cl(g)xS-+S

making the fibre of S -÷ M at x E M into the carrier spaceof a representationof

the Clifford algebraCl(g~)associatedwith (TXM, g~),where is therestriction
of g to the tangentspaceTIM.

The bundles ~ and S are inequivalent:amongeven-dimensionalspheresonly

those of dimension2 and6 admit bothChevalleyandDirac bundles.The Dirac

bundles of spheresare all trivial (Gutt 1986), but the Chevalleybundle of is
not. All complex manifolds admit Chevalley bundles defined by their complex

structure.In particular, this is true of the even-dimensionalcomplex projective
spaceswhichhaveno Dirac bundles.

For mostpurposes,oneassumesthe standarddefinition (i). Wehavementioned

definition (ii) to emphasizea certain non-uniquenessin the notion of spinorson
manifolds. The latter definition is closely related to the approachto spinors
through differential forms (Ivanenkoand Landau1928,Kãhler 1960,Graf 1978)

and to the representationsof Clifford bundles consideredby Karrer (1973).

3. NULL ELEMENTS AND SIMPLE SPINORS

The approachto spinorsexposedby Elie Cartan(1938) is basedon the useof

null (1) (light-like, optical) geometricalelements:vectorswith vanishingsquares

(1) In pure mathematicsthe adjective ~xisotropicsis usedto denotevectorswith vanishing
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and linear spacescontainingnon-zerovectorsorthogonalto the space.The con-
nection between spinors and null elementsis of fundamentalimportancefor

the applicationsof spinors in the theory of relativity (Penrose1960, Penrose
and Rindler 1984, 1986). It is at the basis of the Newman-Penrose(1962)for-
malism developed to study and solve Einstein’s equations.The discovery of
twistors by Pensore(1967) is closely linked to observationsconcerninga re-

markableRobinsoncongruenceof null lines in Minkowski space(Penrose1987).
Twistors have led to deepresults, such as new methodsfor solving both linear
andnon-linearequations(PenroseandMac Callum 1972,Ward 1977).

A connectionbetweenspinorsand null vectors can be illustratedon the old
problem of Pythagorean triples, i.e. triples x, y, z of positive integerssuch that

(9)

Equation(9) meansthat thevector (x, y, z) is null with respectto a scalarproduct

of signature(2,1). It is equivalent to the statementthat the symmetric matrix

1 z+y x
(10)

2 x z—y

is of rank 1: det X = 0 and X ~ 0. Therethusexistsa two-componentreal<<spi-
nor>> (p. q) suchthat

(11)

or

(12) x=2pq, y=p2—q2, z=p2+q2.

Not only does (12) give a solution of (9), but every Pythagoreantriple of rela-
tively prime integers(x, y, z) can be representedasin (12)by choosinga suitable
coupleof relatively prime integers p and.q.

As an examplecloser to physics, considerthe vectorsE andB of a non-zero
electromagnetic field, thecomplexvector

(13) F=E+iB=(F
1,F2,F3),

andthesymmetricmatrix

square and also vector spacesconsisting of such vectors (Porteous 1981).Physicistsrefer to
such objects as enuth. The former choice is somewhatmisleadingsince theword ((isotropy))
is oftenusedin a different context:there is the isotropysubgroupdefinedby the action of a
groupin a space.
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F+iF iF
(14) 1 2 3

iF
3 F1—iF2

Its determinant,

det~=F1
2+F~+F~

vanishesif, and only if, the electromagneticfield is simple or null, i.e. when

(15) EB=0 and E2=B2.

If this is so, then thereis a complextwo-componentspinor ~ = (~)suchthat

~ =( ~

The spinor 0 e C2 is determinedby F up to a sign andcanbealso usedto form

the Hermiteanmatrix

(16)

Equation (16)can be abbreviatedto read J = 0Ø~and thematrix iD represented

as a linear combination of the three Pauli matricesand the unit matrix a
0 =

(17) i,li = k’
1aM (summationover ~ = 0 3)

The real vector k E 1R4 with componentsgiven by (17) is null with respectto

the Minkowski scalarproductof signature(1,3). Moreover,

(18) k°=(Ej=(B(andk°k=ExB,

where (k1, k2, k3) = — k. Simple electromagneticfields characterizedby (15)
and (18) play a major role in the theory of shearfree congruencesof null geo-

desicsin Lorentzian manifolds; they give rise to an <<optical geometry>>and a
Cauchy-Riemannstructure on the space of null geodesics(Robinson 1961,
Penrose1983a,Trautman1985,RobinsonandTrautman1986).

To put in perspectivetheseexamples, considerthe complex vector space
V = C2m with a scalarproductg anda faithful irreduciblerepresentation

(19) ‘y:Cl(2m)-*C(2m)

of its Clifford algebraCl(2m). Let 0 E S = C2m be a non-zeroDirac spinor, Its

directiondir 0 definesa vectorsubspaceof V,

(20) N(dir 0) = {u E Vj y(u)çb = 0}.

From the basicpropertyof therepresentation(19),
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(21) ‘y(u)7(v)+ ‘y(v)-y(u) = 2g(u, v),

it follows that N = N(dir 0) is totally null, i.e. every vector in N is null. The

dimensionof N is not larger than rn. A necessaryconditionfor N to be of the
maximal dimensionm is that 0 be a Weyl spinor, i.e. aneigenvectorof the helicity

operator

(22) r=im7172..
72m’

where ‘y~= ‘y(e~~)andea (cx = 1,. . ., 2m) are thevectorsof an orthonormalbasis

in V embeddedin Cl(2m). This conditionis also sufficient for rn = 1, 2, and3:
thereis a natural,bijective correspondencebetweenthe projectivespaceof Weyl
spinors andthe set of maxima,totally null planesof the correspondinghelicity.

For rn ~ 4 the complex dimension2m1— 1 of the projective space of Weyl
spinorsis largerthan the dimensionm(rn — 1)/2 of themanifold

(23) SO(2m)/U(m)

of maximal totally null planes. Elie Cartan calls a spinor simple (in the French

edition, Cartan 1938; in the English translation,the adjectivepure is used)if it
defines by (20) a totally null plane of maximal dimension. Cartan shows that a
Weyl spinor 0 is simple if, andonly if,

(24) (B0,’y~y~.•~7aO)0

for all sequencesof integerscx suchthat

(25) l~cx
1<cx2<...<a~~2mand 0~p~m—l.

Here B : S ~+5* is suchthat ~‘y~= By~B’ andit is understoodthat for p = 0
condition(24) reducesto

(26) (B0,O)=0.

The rn-form with componentsgiven by (24) for p = m characterizesthe rn-dimen-
sionaltotally null planeassociatedwith thesimple spinor0.

In eight dimensions(rn = 4) equation(26) is the only conditionfor 0 to be

simple. Here simple spinorslie on a <<null cone>>in the eight-dimensionalspaceof
Weyl spinors;an interestingtriality, or symmetry betweenthe threeeight-dimen-
sional spaces(vector spaceand two spacesof Weyl spinors),appearsin this case
(Study 1903, Cartan 1925, Weiss 1933, Chevalley 1954, Tits 1959, Porteous
1981,PenroseandRindler 1986).

Simple spinorscan be definedin a similar mannerfor realvectorspaceswith a
neutral scalar product. For other signatures, if one insistson stayingwithin the

domain of real numbers,the situationis much morecomplicatedandsubtle.For
example, if the scalarproductis positive-definite,then thereareno null directions
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whatsoeverand the group SO(n)of rotations acts transitively on the projective

space lRP~_1of vector directions.For sufficiently high n, however,the action
of Spin(n) on the projectivespinor space is not transitive. The <<simplicity>> of a
spinor can be measuredby the dimensionof its orbit underthe action of the

spin group: the lowerthe dimension,the simpler the spinor. Only partial results
have been so far obtainedon the classificationof orbits of Spin(k, 1) and the
geometrical interpretationof simple spinors in those cases (Porteous 1981,

Igusa 1970,Popov 1977, Benn and Tucker 1988, Budinich 1986b,Budinich and

Trautman 1986).

4. GENERAL PROPERTIES OF CLIFFORD ALGEBRAS

In this paper, we describein considerabledetail the spinorial representations

of the Clifford algebrasassociatedwith complexandreal vectorspaces.We give
explicit methodsto find the representationsfor arbitrary dimensionand signa-
ture. We also presentall the essentialinformation abouttheinvariantbilinearand
Hermitean forms on the carrier spacesof the representations.Specialattention

is devoted to the appearanceof Weyl and Majoranaspinors (of two kinds), to

charge conjugationand to the symmetry and signatureof the invariant forms.
Our main tool is the classicaltheoremaboutrepresentationsof simple algebras.

To obtain an overall picture of the representationsof Clifford algebrasit is
convenientto divide the study into severalstepsin sucha way that at eachstep

a new structureis introduced.

(i) At first, one forgetsabout the Clifford algebraeverythingbutits structure
of algebrad. For any algebra~, we denoteby 2~the direct sum .~ a ~4.
Therearetwo typesof complexalgebras,

C(2
m) and 2C(2m),

andfive typesof realalgebras,

IR(2m), 2lR(2m),H(2m),2H(2m) and C(2m).

The integer rn is simply relatedto the dimensionof the underlyingvectorspace.

For example,consideredas abstractalgebras,the threealgebrasCl(4), Cl
0(4, 1)

and C10(2.3) are all isomorphic to C(4). Here and in the sequelCl(k, 1) denotes

the real Clifford algebraassociatedwith a scalarproduct of signature(k, 1). Its
evensubalgebrais denotedby C10(k,1).

(ii) If the Clifford algebrais consideredtogetherwith its ~2 -gradinggiven by

the main automorphismcx, then thereare still two types of complex algebras,
but already eight classesof real algebras.cf. Table I, <<The real clock>~.This
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providesa classificationfiner thanat the previousstep,but onecannotdetermine

the signature of the underlying vector space from the sole knowledgeof its
gradedClifford algebra d0 —~d. For example,thegradedalgebra

21R(8)-+IR(16)

is isomorphicto Cl0(8, 0) —* Cl(8, 0), Cl0(4,4) -+ Cl(4,4) and C10(0,8) -+ Cl(0,8).
The classof the realalgebraCl(k, I) dependson

(27) k—l mod 8.

(iii) If

(28) y:Jd-3-EndS

is a faithful irreducible representationof a simplealgebrad with an involutive

antiautomorphism~, thenthe contragredientrepresentation

-+ End5~,where ~(a) =

is equivalentto ‘y andthereexistsan isomorphismB : S -÷S” intertwining‘y and
~. If d is centralsimple, thenB is eithersymmetric or skew;it defmesaninner

product on S. The symmetry of B dependson the dimensionn of theunderlying

vectorspace

B forn=0,1,2,7 mod8
(29) tB =

—B forn=3,4,5,6 mod8

The double periodicity mod 8 given by (27) and (29) gives rise to a chessboard
arrangementof real Clifford algebrasalluded to in the title of this work and

presentedin TablesII - V.
(iv) Thereis a greatwealthof structurein a Clifford algebrad takentogether

with thevectorspaceV that generatesit:
1. Thenaturallinearisomorphisms

(30) d~AV~AV*

allow an interpretationof elementsof the Clifford algebra as multivectorsor
forms.

2. Thegrading, d = ~ ~ may be used to defineanassociatedgraded
or <<super>> Lie algebr.a. Its underlying vector space coincideswith d and the
gradedbracketis

[a, bj = ab — (— 1 )“ ba, where a E ~,, b E dq~

andp. q = 0 or 1. Ofparticularinterestis thegradectLie subalgebra
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~‘= K a V a A2V.

If u, u E V, then

(31) [u,v]=uv+vu=2g(u,u)

so that

[K,S~’]=0, [V,V]cK, [V,A2VjcV

and

[A2V, A2V] CA2V.

The last inclusion meansthat A2 V is an (ungraded)Lie subalgebra:it is the Lie
algebraof the orthogonaland spin groups.Thesegroupsare alsosubmanifoldsof

we defertheir detaileddescriptionto subsequentwork.
3. If ~ is a minimal left idealof a simplealgebrawith unity d, then

y:d-÷End~, where7(a)brrab,

for every a E d and b E ~, is a faithful irreduciblerepresentationof d. This

gives Chevalley’s(1954) interpretation of spinors as elements of a minimal (left)
ideal of a Clifford algebra.

All Clifford algebrasare <<supercentrab>: numbers(scalars)are the onlyelements
which supercommutewith all elementsof the Clifford algebra(Wall 1964). If
(e) is an orthonormal basis for a scalar product of signature(k, 1), then the

squareof the volumeelement

(32) 71=e
1e2. ..ek+l

is

= ( 1)(k(k~11)/2

For k — 1 2 or 3 mod 4 the squareis negativeand r~belongs to the centreof

or d, respectively. It may, therefore,be representedby i times the unit
endomorphismof the spaceof Weyl or Dirac spinors.

There are at least two other <<independent>>ways of introducing complex

numbersin quantumtheory. The first comesfrom the observationthat energy
and momentumare relatedto translations.Infinitesimal translations are repre-

sentedby first-orderdifferential operators.To makethem (formally) self-adjoint
one has to multiply them by i. A related observationis that the Laplacianon
compactRiemannianspacesis a negativeoperator.

Another reason for considering complex wave functions and, in particular,

spinor fields, has to do with electromagneticinteractions. According to the
gauge,or <<minimal interaction>> principle, wave equationsfor chargedparticles
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contain the gradientoperatord alwaysin the combinationd-ieA, where e is the
chargeandA the potentialof the (external)electromagneticfield. The i comes

from the fact that the Lie algebraof the groupU(l) — thegauge group of electro-

dynamics — consists of pure imaginary numbers.It is not a trivial or obvious

matter that the three i’s (spinonal, quantum-mechanicaland electromagnetic)
are one and the same;but they are as indicatedby the successesof the Dirac
equation. Similar remarks haverecently beenmadeby ChenNing Yang (1987).

(v) Let d denoteCl(k, 1) or C10(k, 1) dependingon whetherk + 1 = 2m or
2rn + 1, respectively.The algebrad is centralsimple and,therefore,hasonly

one, up to equivalence,irreducible faithful representation.Let (28) be such a
representationin a spaceS of complex dimension2m The complexconjugate

representation

d -# End S

is real-equivalentto ‘y. Therethusexistsa linearisomorphismC : S —~S intertwin-

ing 7 and ~,

~(a)C=C7(a), aEd.

It is definedup to a complexfactorwhichcanbechosenso that

— I for k—lmO,l,2,7 mod8,
CC =

—I for k—1m3,4,5,6 mod8.

Dependingon whetherCC = I or — I therepresentation715 realor quatemionic.
If it isreal,then thereare Majoranaspinors(of the first kind) definedby CØ = ±0.
For k — I 6 mod 8 one can defineMajoranaspinors(of the secondkind) as

eigenvectorsof C7~7),where~ is thevolume elementgiven by (32). Thereareno
Majoranaspinorsof any kind for k — I 3, 4, 5 mod8.

For k + / = 2rn +- I, the full algebraCl(k, I) admitsanirreduciblerepresenta-
tion 7 in a complex 2m~dimensionalspace.This representationis faithful when
restrictedto the evensubalgebraandcanbe chosenso that

=where pmk—/mod8and0~p~7.

Therefore, there is the equivalenceof representations,

~ for v=l and5,

1’~~-’
‘yoct for i”=3 and7,

where cc is the main automorphism of Cl(k, 1).
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5. REPRESENTATIONSOF REAL CLIFFORDALGEBRAS

In this section we give a short summaryof the propertiesof representationsof
Clifford algebrasof real vector spacesin a languagefamiliar to physicists.The

2m-dimensional spinor space S is identified with C2
m, the endomorphisms

are
2m by 2m matrices andthe symbolstA At andA denotethe usual trans-

pose,Hermiteanconjugateand complex conjugateof the matrix A, respectively.

ThereforeA~ ~
If (k, I) is the signature,k + 1 = 2rn or 2m + 1, then thereare k + / Dirac

matrices E C(2~) suchthat

(33a) ‘y~’y0+y,~’y~=0 for a~13,aand 3=1 k +1,

(33b) ‘y
2 =1 for kvaluesofcxandi~=—I for /values of cc.

We do not insist here that the first k valuesof the label shouldcorrespondto
Dirac matriceswith positivesquares;only the totalnumbersof positiveandnega-

tive squaresmatter.

5.1. The caseof even-dimensionalspaces,k+ / = 2in

Let k —l = 8p + r’, where p is an integerand0 ‘~ r’ ~ 7. The matrix

(34) F = i~~~~1271- 72m anticommuteswith

and

(35) F2=J.

Thereexistinvertible matricesA, B, C, D, E E C(2m)suchthat for every cc

(36A) 7~=Ay~,A~,

(36B) = B”çB’,

(36C) ‘~a

(36D) ‘y~=—D’y~D~,

(36E) ~
7 =~E’YaE~,

Theysatisfy

(37B) tB = (~l)m(m~l)I
2B

(37E) tE = (~ yn(m +

(37F) tF = (— 1)~BFB~

The defining properties(36) determinethe matricesA E up to complex

factors.Thesefactorscan bechosenso that
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(38) CC= (— 1)v(~2)/8I

(39A) A=BC=A~

(39B) D=EC=Dt

(40) E=i
1BI’

The remainingfreedomis A -+ AA, B -+ A~B,C -+ pC, D -+ XD, E -~ ~zE, where
X is real ~ 0 and ~zis complexof unit modulus.

If U is an invertible matrix, U E C(2m), then thematrices

(41) ‘7a=U’7c~

have the properties(33). Marking with primes on the left the matrices associated

by (36A-E)with the matrices~ we have

(42A) ‘A=UtAU,

(42B) ‘B=tUBU,

(42C) ‘C=U’CU,

andsimilar relations for ‘F, ‘D and ‘E.
The Hermitean forms ptAp and ~ where ~ E C2m, are neutral except in

the following cases:

(43A) ptAp is definitefor 1 = 0, k >0,

(43D) p~D~pis definite for k = 0, 1>0.

These forms restrict to non-degenerate Hermitean forms on the spaces of Weyl
spinors, if, and only if, k is even. For odd k, the matrices A and D change the

helicity of Weyl spin ors.

5.2. The case of odd-dimensional spaces, k + 1 = 2m + 1

Let k — I = 8p + v, where p is an integer and 1 ~ i’ ~ 7. One canchoose the
matrices ‘y~ 72,n + ~ so that

(44~ = ~v(v—l)/2j
‘ / ‘i~ ‘2m+1

There exist matrices A
0 , B0 and C0 such that, for every a

(45A) = (— l)
1A

0’y~,A~

(45B) = (~ 1)mB0~y~B~l

(45C) = (~I )V(V 1)/2 C~1

and
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(46) A0=B0C0=A~

(47) B0=~(.—-l)m(m+l)/
2B

0

(48) C0C0 = (— l)(P2_1)181

The Hermitean form ~ptA01pis neutral except in the casewheneither k = 0 or

1 0: it is then definite.

5.3. Adding one dimension to an even-dimensional space

Let k + 1 = 2m and k—I = 8p + v, as before.The 2rn + 1 matrices

(49)
71’~’72m and’y

2~~1=F

are Dirac matrices for a spacewith signature(k + 1, 1) and

A for / even,
(50A) A0=

D for / odd,

B for m even,
(50B)

E for m odd,

C for ~=0or4,
(50C+) C0=

CF for v=2or6;

wherethematricesF,A,...,Eareasin§5.1.

Similarly, the 2m + I matrices

~1~ ~ and iF

are Dirac matrices for a spacewith signature(k, / + 1). Theintertwiningmatrices

A0 andB0 are asin (50A) and (SOB), but

C for u=2or6,
(50C—) C0=

CF for i = 0 or 4.

5.4. Adding a 2-dimensional neutral space

As an example,we give explicitly all relevant quantitiesfor an extensionfrom
signature(k, 1) to (k + 1, / + 1). We choosean extensionof specialkind that

allows a simultaneoustreatmentof even-andodd-dimensionalspaces.Onecan take

(51) ‘y~=oa’ya(cc= I k+l),y~~1~1=raI and

(i) For k + 1 = 2m wehave
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F’=a®F, C’=I®C

(52) A’=r®D, D’=(—l)’ie®A

B’=raE, E’=(—l)1~1ieuB

(ii) Fork+/=2m +1 wehave

ie®A
0 for 1 even,

(53A)
r®A0 for I odd,

—ie®B for m even,
(53B) B~= 0

røB0 for m odd,

1øC0 for v=lorS,’
(53C) C~= —

ion C0 for v—3or7,

where k — / = 8p + v and the matrices A~,B~and C~are in the same relation

tO7~asthematricesA0,B0 and C0 are to ‘ye,, cf. §5.2.

6. THE SPINORIAL CHESSBOARD

There are several <<periodicity properties>> of real Clifford algebras and their

representations. The type of the algebra depends only on k I mod 8. But the
symmetry propertiesof the invariant bilinear forms dependon k + 1 mod 8.
There is a <<double periodicity>> in the set of all real Clifford algebras:it is con-

venientto describeit by referringit to a chessboard.
We definethespinor/al chessboardto betheset of 64realalgebras

{CI(k, l)~0 ‘~k,l~7}

whereit is understoodthatC/0(O,O) -+ Cl(O,O)is thealgebraIR —~ IR, i.e. C/1(O,O)=

= W}. In addition to the chessboard— and representationsof its elements— we
consider the two eight-dimensionalEucidean algebrasCI(8,O) and a(o,8).
According to the periodicity property, if k’ = k + 8p and 1’ = / + 8q, then

(54) Cl(k’, 1’) = Cl(k, 1) lR(16P+~)

Therefore,every Clifford algebracan be representedas in (54), with Cl(k, 1) on
the chessboard.The significanceof this remark goes beyond the mereisomor-

phism of algebras (54): therepresentationsof Cl(k’, I’) and the associatedbilinear
and Hermiteanforms can be easily constructedfrom those of Cl(k, 1). Adding
eight dimensionsmakes larger the Clifford algebra and the associatedspinor
spaces,but preservestheir essentialpropertiessuchas the symmetry of B, type
of C, etc.
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To make the last statementmoreprecise,considera vectorspaceV = 1R8 with
a positive-definite scalar product. The faithful irreducible representationof its

Clifford algebra,

(55) C/(8,O) -+ End 5,

is real so that S can be taken to be a real, 16-dimensionalspace(of Majorana
spinors). Let (e

1, . . ., e8) be an orthonormalbasis in V. The set of 28 products
of the form

~ . .e~,,where 1 ~a1<cx2<. . .<cc~,~8,

constitutea basis of the algebra.This basis is orthogonalfor the scalarproduct

h on C/(8,O)definedby

h(a, b) = Try(f3(a)b).

Indeed,if

a=e ...e andb=e ...e

where

1 ~cx1<. . .<cx,, ~8 and 1~/3~<.•~<~

3q~8,

then

~3(a)b=1wheneverp~=qandcc
1=@

and

Tr ‘y(fJ(a)b) = 0 otherwise.

Therefore,the scalar product h is positive-definite and the symmetric bilinear

form B is also positive-definite.We choosea basis in S suchthat B is represented
by a unit matrix with respectto this basis,and we usethe basisto identify S with

so that the representation (55)can be describedas

(56) 0 :C1(8,0)-÷lR(16)
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and0 = 0, i.e. the Dirac matrices

= O(ea), cx = I, . . ., 8,

are symmetric,

to e
a a

Theymay be chosen to be

01 =a®1®1®1, O2=E®E®I®J~

03=6 ®c®e~I, 04 =E® C® aBC,

(57)
05=e®anrge, O~,=enr.®I®e,

07=e®rg�®a, 08=car®enr,

Their product

o=~® i®i®i

is also symmetric and 02 = I. There is the decomposition

00=0+ o0_,

where

(58) 0~:C10(8,0)-+IR(8)

are the inequivalent Weyl representations of the even algebra. Since 8 anticom-
mutes with the Dirac matrices, one can construct a faithful irreducible represen-

tation of the oppositealgebra

(58*) *0 :C/(O,8)-÷IR(l6)

by putting

(59) *Oa =8Oa~ a= 1,.. .,8,
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sothat the Dirac matrices(59) are skewand

(60) ‘*Oa = e

Let

(61) : CI(k, 1) —~-End S

be a representation of the Clifford algebraCl(k, 1). One can extend it to repre-
sentations

7’: Cl(k + 8, I) -+ IR(16)n End S

and

7” :Cl(k,l+8)—~-lR(l6)®EndS

by putting

(62a)

(62b) 7~+k+l
0a®! (cx=l,...,8),

and

(62c) 7+k+l=B0a®1 (cc=l 8).

Marking with primes or double primesthe quantitiescorrespondingto the exten-
sions~ or 7”, respectively, we obtain for k + / even

F’ = B n F = F”

A’=I®A, A”=BuA

B’=I®B, B”=e~B

(63) C’=JnC=C”

D’=OaD, D”=InD

E’=BnE, E”=J®E.
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Adding 8 <<positive>> or <<negative>> dimensionspreservesthe characterof A, B,

C or D, E, C, respectively.If A or D is definite, then sois A’ orD’, respectively.
Thereare similar resultsfor k + / odd,namely:

(64A) A~(for/ even)andA~(for / odd) = I

(64B) B~(form even) and B’~ (form odd) =1mB0,

(64C) C~andC~(for ~‘ = 1 or 5) =

(65A) A~(for /odd) and A’~(for leven) = 0 mA0,

(65B) B~(form odd) andB~(form even) = On B0,

(65C) C~andC1ç(forv=3 or7)=OmC0.

2R o

1-6 2.3

IH —~--~.i_2 IH

Table I. The realdock ~.

may be usedto find the Clifford algebraC1(k, I) and its evensubalgebraCl0(k, 1):
computefirst the hour p such that I — k = 8p + p, wherep is an integerand

O ~ p ~ 7. The lettersadjacentto the hour determinethe type of the algebras.
The dimensionof the full algebrais 2k+l For example,C/0(3,5) —~ Cl(3,5) is

C(8) -÷H(8) because,in this case, p =2 and dim H(8) = 28.

(2) Thecomplexclock is muchsimpler:it has a two-hour dial.



382 PAOLO BUDINICH, ANDRZEJ TRAUTMAN

-I

I I
- -~- -i-- —4-

4 I I

a8,8

II
I I

—I--

I I
,66~4’I,06

0~5~ / I

%II~ ———4—. — ——

I I0.319 _
-- ~-- --I--V/_~i~iii _ I

“02/ 4 ---I--I-
—I—a L0,1 I I

(0~’ 70k £ = ‘00.’ 1,0 ,2,0 /, 3,0 ,4
— _ ~. ‘— —

Table II. The Spinorial Chessboard.

Even-andodd-dimensionalClifford algebrasCI(k, I), 0 ~ k, / ~ 7, occupy,respec-

tively, black and white squaresof the board. For example, the algebracI(3,l)
of Mirikowski spaceis at thesquareof thewhite queen’spawn.Everyreal Clifford
algebra can be reachedfrom one on theboardwith rook’s movesto theright and
upwards,each move being by a multiple of eight squares,as describedby (62)

and (63).
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~

yl /1//i/i / /1/li

~/0.7) /77/ /~

_/

-1

__ /

,/~I0)/i1~0) 2,0,~,/’(3,0) 4:0),/t5P)/~6~o) (i,o)
1 1 —1 —1 1 1 —1 —1

Table III. The structure of the algebras occurringon thediessboardmay be determinedfrom
the following data.

White and black dots replace here the squaresof the chessboard.The figures on

the left and lower sidesare values of the volume element squared. Those on the

right and upper sidesdetermine the type (real if 1, quaternionic if— 1) of the full

(for k + / even) or even (for k + / odd) Clifford algebra.
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Br: (+1+) (+,÷)(+~-)(-,-) (-,+)(-,+) (-I-)

___ (#~-)(-~-)\ ___

0,6

~‘ +) \ ~ \ \ \ ~ ( I)

__ —

(-1+) (~~
0,4

(-~-) \ \ __ \ N (- +)0,3
(+i-)\ \~\\ \\

0,2

(4-,—)(+~-)\ \~\ ~
0,1

I ~>ç~0&\\2p~~4,05,0\ 6,0

k ,P~

(+, 4) (4,—) (-1 -) (- ~+)(-, 4) (-1—) (41 —) (+1+) 1

Table IV. The bilinear forms and their symmetries.

The isomorphismsB andE defined by ~y = By~B~’and ~7 = —Ey~E’are
either symmetric or skew and they either commute or anticommute with the

helicity operatorF. Thesepropertiesare indicatedaboveby pairs (C>, �2) where
and �2 = + or-. They are defined by tB = andBF = e2tFB~andsimilarly

forE.
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Ddefinite
D 0 D

~L0,7I— — — — ~— —n———

A A A A
(0,6) — s— —

0 0 D __ 0
(0,5) — —

(0,4) ~. — A

(0,3) 1L ___

(0,2) — s— — &.. — — A

(o,i) ~— — — —

— — A A — A
(Ic.Q~~=~o,o) (i,o). (2p) (3,0) (4p) (5,o) (s,o) (i,o) ~.

A definite

Table V. The Dime (Hermitean)forms.

The isomorphismsA and D are defined by 7~ A7aA’ and ‘y~= —

They both exist for even dimensional spaces.In an odd number of dimensions,

exactly oneof the two exists, dependingon the parity of k; this is indicated by

the letter A or D next to the correspondingwhite dot. The Hermitean forms
Á(Ø, 0) are (positive) definite for the algebrasC’I(k, 0); similarly, the Hermitean
forms D(0, 0) are (positive) definite for (7(0, 1). Otherwisethey are neutral.
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7. CONCLUDING REMARKS AND OUTLOOK

Every physicist will agreethat spinorsare a necessaryand important tool in

the description of fundamentalinteractions.The successof the Dirac equation
is one of the most beautiful chaptersof theoreticalphysics.Spinorsplay a major

role in essentiallyall recentattemptsat building new models(grand unification,
supersymmetry,strings and membranes).They are also very useful in the clas-

sical, relativistic theory of gravitation(PenroseandRindler, 1 986).An impressive
exampleof the usefulnessof spinoranalysis in a new domain hasbeenprovided

by EdwardWitten (198la)who provedthe <<positiveenergytheorem>>in Einstein’s
theory in a mannerwhich is more transparentthan the earlier proof due to

Schoenand Yau. Thirring (1972) showedthat by consideringspinorsin a five-
dimensional space one can obtain CF violation in a geometricalway. Recent
renewalof interest in generalizedKaluza-Klein theories(cf., for example,the pa-
persby Witten (198lb),Abdus Salam and J. Strathdee(1982),and StevenWein-

berg (1983)) has led to consideringspinorsin spacesof dimensiongreaterthan
four. In a somewhatdifferent context,oneof us (Budinich 1979,1986b)propos-
ed to considerfields of simple(pure)spinorsin suitablehigher-dimensionalspaces

and to relatethem to wave-functionsof physical particles.Thereare indications

that in this mannera <<natural>>way of deriving interactiontermsof Lagrangians
of particleswith internal symmetrymay be obtained.Attemptshavebeenmade
to write a differential equationfor simple spinors,consistentwith the quadratic

constraints(24). For example,the method of Lagrangemultipliers, applied to a
variational principle in 7 space-timedimensions,leadsto a Weyl equationfor

simple spinorswith a <<massterm>> inducedby the constraint(26) (cf. Budinich
and Trautman 1986 and the referencesgiven there).A remark on the possible
physical relevanceof simple spinorshasalso beenmadeby A.D. Heifer (1983).

There are some <<unexpected>>applicationsof spinors:spinor connectionson
low-dimensionalspherescoincide with simple, topologically non-trivial gauge
configurations (Budinich and Trautman1986). Spinors provide a fine tool for

the study of topological properties of manifolds (Atiyah, Bott and Shapiro

1964, Atiyah and Singer 1968). There is a remarkableespinorial>>form of the

Enneper-Weierstrassformula for solutions of the equation for minimal surfaces

and of its extension to strings (Budinich 1986a,Budinich and Rigoli 1987, and
the referencesgiven there). It is basedon a representationof complex and real
null vectorsin termsof spinors,analogousto thosedescribedin §3.

Considerationssuch as theseconvince us that theremay be somethingmore
to spinorsthan has been said and seenso far. Thisview has beenput forward,
quite a long time ago, by Roger Penrosewho pursuedthe mostcomprehensive

and farthestreachingprogrammeof applying spinors— and their closerelatives,
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twistors — in fundamentalphysics.We sharehis view <<that we have still not yet

seenthe full significanceof spinors— particularly the 2-componentones — in

the basic structure of physical laws>> (Penrose 1 983b). We are inclined,however,
to extend the belief in the significanceof spinorsto thoseassociatedwith higher-

dimensional geometriesand replacethe phraseabout the 2-componentspinors

by one referring to simple spinors and thehomogeneousspacesmentionedin §3.
(Note that, in four-dimensions,simple spinors have two components.More

generally,Weyl spinors are simple in neutralspacesof dimension~ 6. In parti-

cular,twistorsare simple).
Our work is an attemptto follow this road.The presentarticleis a preparation

for a systematic study of the spin and pin groups and of their representationsin

relation to simple spinors. We intend to makemore precise the idea that the
dimensionof the orbit is a measureof the simplicity of spinorsit contains,use

our methodsto derive the biquadraticspinor identities (Case1955),study (sim-

ple) spinor fields on homogeneousspaces— such asthe one arising from confor-

mal compactification— and consider the possibilitiesofferedby variousschemes
of dimensionalreduction.As many before us, we drawencouragementfrom the
Great Masters. Someof them have alreadybeenmentioned.We concludethese

remarkswith a quotationfrom HermannWeyl (1946):

Theorthogonal transformationsaretheautomorphismsofEuclideanvectorspace.
Only with thespinors do westrikethat levelin the theoryofits representationson
which Euclid himself,flourishing ruler and compass,so deftly movesin therealm
ofgeometricfigUres,.
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